기관회원 [로그인]
소속기관에서 받은 아이디, 비밀번호를 입력해 주세요.
개인회원 [로그인]

비회원 구매시 입력하신 핸드폰번호를 입력해 주세요.
본인 인증 후 구매내역을 확인하실 수 있습니다.

회원가입
서지반출
인간발달연구에서의 종단자료 분석: 잠재성장모형을 중심으로
[STEP1]서지반출 형식 선택
파일형식
@
서지도구
SNS
기타
[STEP2]서지반출 정보 선택
  • 제목
  • URL
돌아가기
확인
취소
  • 인간발달연구에서의 종단자료 분석: 잠재성장모형을 중심으로
  • An Analysis of Longitudinal Data in Human Development Study: With a Special Focus on Latent Growth Model
저자명
신택수
간행물명
인간발달연구KCI
권/호정보
2014년|21권 3호(통권59호)|pp.1-28 (28 pages)
발행정보
한국인간발달학회|한국
파일정보
정기간행물|KOR|
PDF텍스트(0.85MB)
주제분야
사회과학
원문 미리보기는 1페이지만 제공 됩니다. 전체 페이지 보기를 원하실 경우 다운로드열람하기를 이용해 주세요.
서지반출

국문초록

본 연구에서는 종단자료의 특성과 분석방법을 소개하고 이의 실제 활용에 대하여 논의하였다. 종단학업 성취자료를 이용하여 종단자료 분석기법 중 잠재성장모형(latent growth model: LGM)에 기반한 연구모형들 의 구조와 분석결과를 설명하였다. 위계구조와 확인적 요인분석에 근거한 LGM은 관심특성의 변화를 추 정하고 이와 관련된 맥락변인들의 효과를 분석하는 모형이다. LGM의 가장 기본적인 분석으로 성장궤적 을 추적하는 무조건모형분석에서 수학의 학업성장속도는 시간이 지남에 따라 감소(비선형궤적)하였으며 학력격차는 증가하는 것으로 나타났다. 조건모형분석에서는 초기 성취수준과 성장에 있어 성별 그리고 사회경제적 지위에 따른 유의미한 차이가 발견되었다. 여학생은 초기위치에서 낮은 성취수준을 보고하였 으나 성장속도는 남학생보다 오히려 빠른 것을 확인할 수 있었다. 사회경제적 지위가 낮은 학생들의 성 취수준이 모든 연도에서 그 외 학생들보다 떨어지는 것으로 나타났다. 다층구조분석을 통하여 최초 측정 시점에서 학교 간 성취수준의 차이가 발견되었으나 성장에서는 학교별 차이가 없는 것으로 나타났다. 또 한, 초기위치와 성장요인 간 관계도 유의미하지 않아 학교 간 격차가 지속적으로 유지되고 있는 것을 알 수 있었다. 다변량성장모형 분석에서는 읽기성취가 수학성취에 긍정적인 영향을 미치는 것으로 나타났고 최적의 잠재성장집단은 4개로 추정되었다. 마지막으로 종단연구 시 고려해야 할 사항들에 대하여 논의하 였다.

영문초록

This study explained characteristics of longitudinal data and analytic tools. It also described how various modeling techniques can be applied to longitudinal study. Among the several longitudinal data methods, the study focused on latent growth modeling (LGM) based analytic approaches. LGM is modeled as a function of an underlying growth process. It also explores effects of specific factors on individual variation in the growth characteristics. In the unconditional analysis, the growth trajectory of mathematics achievement was followed by nonlinear shape (i.e., concave shape). For the analysis of the conditional model, gender differences were found in terms of both initial status and growth. Although female students reported lower initial scores, the growth rate was significantly faster in females than in males. Additionally, low SES students repeatedly reported lower scores across years. In the school level, although significant differences were found on the initial status, the initial status and the growth were not significantly related, suggesting school gap sustained. Lastly, reading ability would have a positive influence on mathematic achievement and the proper number of latent classes was deemed to be 4. Other pertaining issues were also discussed.

목차

Ⅰ. 서 론
Ⅱ. 종단연구의 특성
Ⅲ. 종단자료 분석방법
Ⅳ. 연구방법
Ⅴ. 잠재성장모형을 이용한 종단자료 분석 결과 및 해석
Ⅵ. 논의 및 결론
참고문헌

참고문헌 (71건)

  • 강민수, 문용린 (2007). 생애사 연구의 교육심리학적 고찰. 인간발달연구, 14(1), 1-19.
  • 신택수 (2009). 주변효과모형과 무선효과모형을 이용한 종단이항자료분석(Analysis of longitudinal binary outcomes using marginal and random effect models: 영문투고논문). 교육평가연구, 22(1), 243-263.
  • 신택수 (2010). 종단프로파일과 군집분석을 이용한 잠재집단연구: 성장혼합모형과 비교를 통하여. 교육평가연구, 23(3), 641-664.
  • 신택수 (2011). 군집분포의 형태와 표본의 크기가 성장혼합모형 분석 결과에 미치는 영향 분석: 몬테-카를로 시뮬레이션 연구. 교육평가연구, 24(1), 107-127.
  • 조아미, 신택수 (2012), 성장혼합모형을 활용한 청소년활동 참여 수준의 유형과 특성 분석. 한국청소년연구, 23(2), 161-184.
  • 홍세희, 노언경 (2010). 비연속시간 사건사 분석을 위한 분할함수 모형화 방법의 제시 및 적용. 교육평가연구, 23, 953-973.
  • Armbuster, B. B., Lehr, F., & Osborn, J. (2001). Put reading first: The research building blocks for teaching children to read. Kindergarten through grade 3. Jessup, MD: The Partnership for Reading.
  • Baker, G. A. (1954). Organoleptic ratings and analytical data for wines and analyzed into orthogonal factors. Food Research, 19, 575-590.
  • Bauer, D., & Curran, P. (2003). Distributional assumptions of growth mixture models: Implications for overextraction of latent trajectory classes. Psychological Methods, 8(3), 338-363.
  • Bentler, P. M., & Liang, J. (2003). Two-level mean and covariance structures: Maximum likelihood via an EM algorithm. In S. P. Reise, & N. Duan (Eds.), Multilevel modeling: Methodological advances, issues, and applications (pp. 53-70). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
  • Biesanz, J. C., Deeb-Sossa, N., Papadakis, A., Bollen, K. A., & Curran, P. J. (2004). The role of coding time in estimation and interpreting growth curve models. Psychological Methods, 9, 30-52.
  • Blozis, S. A. (2007). On fitting nonlinear latent curve models to multiple variables measured longitudinally. Structural Equation Modeling, 14(2), 179-201.
  • Bollen, K. A., & Curran, P. J. (2006). Latent curve models: A structure equation perspective. Hoboken, NJ: John Wiley & Sons.
  • Brekke, J. S., Long, J. D., Nesbitt, N., & Sobel, E. (1997). The impact of service characteristics on functional outcomes from community support programs for persons with schizophrenia: A growth curve analysis. Journal of Consulting and Clinical Psychology, 65, 464-475.
  • Browne, M. W. (1993). Structured latent curve models. In C. M. Cuadras, & C. R. Rao (Eds.), Multivariate analysis: Future directions (pp. 171-198). Amsterdam: Elsevier-North Holland.
  • Collett, D. (1994). Modelling survival data in medical research. Texts in statistical science. London: Chapman & Hall.
  • Cudeck, R. (1996). Mixed-effects models in the study of individual differences with repeated measures data. Multivariate Behavioral Research, 31(3), 371-403.
  • Csikszentmihalyi, M. (1996). Creativity: Flow and thepsychology of discovery and invention. New York: HarperCollins.
  • Enders, C. K. (2010). Applied missing data analysis. The Guilford Press; New York, U.S.A.
  • Gaddy, B. (2003). Reading a central focus of no child left behind act. Aurora, CO: Mid-Continent Research for Education and Learning.
  • Gardner, H. (1999). Intelligence reframed: Multiple intelligences for the 21st Century. New York: Basic Books.
  • Gelman, A. (2008). Objections to Bayesian statistics. Bayesian Analysis, 3, 445-450.
  • Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models. Cambridge University Press: New York.
  • Grimm, K. J. (2008). Longitudinal associations between reading and mathematics achievement. Developmental Neuropsychology, 33(3), 410-426.
  • Grimm, K. J., & Ram, N. (2009). Nonlinear growth models in Mplus and SAS. Structural Equation Modeling, 16(4), 676-701.
  • Guba, E. C. (1990). The alternative paradigm dialog. In E. Guba (Ed.), The Paradigm Dialog. Newbury Prak-New Delhi, Sage.
  • Hallahan, D. P., Lloyd, J. W., Kauffman, J. M., Weiss, M. P., & Martinez, E. A. (2004). Learning disabilities: Foundations, characteristics, and effective teaching (3rd ed.). Boston: Allyn & Bacon.
  • Herzog, W., Boomsma, A. (2009). Small-sample robust estimators of noncentrality-based and incremental model fit. Structural Equation Modeling, 16(1), 1-27.
  • Hill, K., White, H., Chung, I., Hawkins, J., & Catalano, R. (2000). Early adult outcomes of adolescent binge drinking: Person-and variable-centered analyses of binge drinking trajectories. Alcoholism: Clinical and Experimental Research, 24(6), 892-901.
  • Himmele, P. (2001). Mathematics reform and English language learners. Dissertation Abstracts International: 62(02A), 500. (UMI No. 3003474).
  • Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55.
  • Huttenlocher, J., Haight, W., Bryk, A., Seltzer, M., & Lyons, T. (1991). Early vocabulary growth relationship to language input and gender. Developmental Psychology, 27, 236-248.
  • Jackson, K., Sher, K., & Schulenberg, J. (2005). Conjoint developmental trajectories of young adult alcohol and tobacco use. Journal of Abnormal Psychology, 114(4), 612-626.
  • Jones, R. H., & Boadi-Boateng, F. (1991). Unequally spaced longitudinal data with AR(1) serial correlation. Biometrics, 47, 161-175.
  • Jordan, N. C., Hanich, L., & Kaplan, D. (2003). A longitudinal study of mathematical competencies in children with specific mathematics difficulties versus children with co-morbid mathematics and reading difficulties. Child Development, 74(3), 834-850.
  • Kalbfleisch, J. D., & Prentice, R. L. (1980). The statistical analysis of failure time data. New York: John Wiley & Sons.
  • Kim, S. Y. (2014). Determining the number of latent classes in single- and multiphase growth mixture models, Structural Equation Modeling, 21(2), 263-279.
  • Kolen, M.. J., & Brennan, R. L. (1995). Testing equating: Methods and practices. New York: Springer-Verlag.
  • Lee, E. T. (1992). Statistical methods for survival data analysis (2nd ed). New York: John Wiley & Sons.
  • Lee, J., & Shin, T. (2005, May). Four-year prospective analysis of adolescent girls: Eating disturbances and self-reported negative affectivity. Presented at American Psychological Society (APS)
  • Levy, R. (2011). Bayesian data-model fit assessment for structural equation modeling. Structural Equation Modeling, 18, 663-685.
  • Linda, N. Y., Lee, S.-Y., & Poon, W.-Y. (1993). Covariance structure analysis with three level data. Computational Statistics & Data Analysis, 15, 159-178.
  • Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data, New York; John Wiley.
  • Long, J., & Ryoo, J. (2010). Using fractional polynomials to model nonlinear trends in longitudinal data. British Journal of Mathematical and Statistical Psychology, 63(1), 177-203.
  • Longford, N. T., & Muthén, B. O. (1992). Factor analysis forclustered observations. Psychometrika, 57, 581-597.
  • McArdle, J. J. (1989). Structural modeling experiments using multiple growth functions. In P. Ackerman, R. Kanfer, & R. Cudeck (Eds.), Learning and individual differences: Abilities, motivation and methodology (pp. 71-117). Hillsdale: Lawrence Erlbaum Associates.
  • Meredith, W., & Tisak, J. (1984, June). Tuckerizing curves. Paper presented at the annual meeting of the Psychometric Society, Santa Barbara, CA.
  • Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55, 107-122.
  • Muthén, B. O. (1989). Latent variable modeling in heterogeneous populations. Psychometrika, 54, 557-585.
  • Muthén, B. O. (1994). Multilevel covariance structure analysis. Sociological Methods and Research, 22, 376-398.
  • Muthén, B. O. (2001). Latent variable mixture modeling. In G. A. Marcoulides, & R. E. Schumacker (Eds.), New developments and techniques in structural equation modeling (pp. 1-33). Lawrence Erlbaum Associates.
  • Muthén, B. O., & Asparouhov, T. (2007). Growth mixture modeling: Analysis with non-Gaussian random effects. Forthcoming in G. Fitzmaurice, M. Davidian, G. Verbeke, & G. Molenberghs (Eds.), Advances in longitudinal data analysis. Chapman & Hall/CRC Press.
  • Muthén, B., & Asparouhov, T. (2012). Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychological Methods, 17(3), 313-335.
  • Muthén, L. K., & Muthén, B. O. (2014). Mplus 7.2; User’s Guide (Seventh Edition) [statistical software package]. Los Angeles, CA: Muthén & Muthén.
  • Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007) Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study, Structural Equation Modeling, 14(4), 535-569.
  • Rajulton, F. (2001). The fundamentals of longitudinal research: An overview. Canadian studies in population, Special Issue on Longitudinal Methodology, 28, 169-185.
  • Rao, C. R. (1958). Some statistical methods for the comparison of growth curves. Biometrics, 14, 1-17.
  • Savalei, V. (2010). Small sample statistics for incomplete nonnormal data: Extensions of complete data formulae and a Monte Carlo comparison. Structural Equation Modeling, 17(2), 241-264.
  • Savalei, V., & Bentler, P. M. (2005). A statistically justified pairwise ML method for incomplete nonnormal data: A comparison with direct ML and pairwise ADF. Structural Equation Modeling, 12, 183-214.
  • Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147-177.
  • Shin, T. (2007). Comparison of three growth modeling techniques in multilevel analysis of longitudinal academic achievement scores: Latent growth modeling, hierarchical linear modeling, and longitudinal profile via multidimensional scaling. Asia Pacific Education Review, 8(2), 262-275.
  • Shin, T. (2012). The application of various nonlinear models to describe academic growth trajectories: An empirical analysis using four-wave longitudinal achievement data from a large urban school district. Asia Pacific Education Review, 13(1), 65-76.
  • Shin, T., Davison, M. L., & Long, J. D. (2009). Effects of missing data methods in structural equation modeling with nonnormal longitudinal data. Structural Equation Modeling, 16, 70-98.
  • Shin, T., Davison, M. L., Long, J. D., Chan, C., & Heistad, D. (2013). Exploring gains in reading and mathematics achievement among regular and exceptional students using growth curve modeling. Learning and Individual Differences, 23, 92-100.
  • Smith, K. E., Landry, S. H., & Swank, P. R. (2000). Does the content of mothers’ verbal stimulation explain differences in the children’s development of verbal and nonverbal cognitive skills? Journal of School Psychology, 38, 27-49.
  • Stoolmiller, M. (1995). Using latent growth models to study developmental processes. In J. M. Gottman (Ed.), The analysis of change (pp. 103-138). Mahwah, N. J.: Erlbaum.
  • Thieme, H. R. (2003). Mathematics in population biology. Princeton: Princeton University Press.
  • Tein, J. Y., Coxe, S., & Cham, H. (2013). Statistical power to detect the correct number of classes in latent profile analysis, Structural Equation Modeling, 20(4), 640-657.
  • Tucker, L. R. (1958). Determination of parameters of a functional relation by factor analysis. Psychometrika, 23, 19-23.
  • Verbeke, G., & Lesaffre, E. (1996). A linear mixed-effects model with heterogeneity in the random-effects population. Journal of the American Statistical Association, 91(433), 217- 221.
  • Yuan, K. H., Fan, Y., & Bentler, P. M. (2012). ML versus MI for missing data with violation of distribution conditions. Sociological Methods & Research, 41(4), 598-629.
구매하기 (3,500)
추천 연관논문